Small-scale milk production systems in Colombia: a regional analysis of a potential strategy for providing food security

ALEXANDER NIVIA OSUNA1, DIANA LORENA MARENTES BARRANTES2

1Programa de Administración Agropecuaria, Facultad de Ciencias y Tecnologías, Universidad Santo Tomas, Bogotá, Colombia.
2Programa de Ingeniería Agronómica, Facultad de Ciencias Agropecuarias, Universidad de Ciencias Aplicadas y Ambientales - U.D.C.A, Bogota, Colombia.

* CORRESPONDING AUTHOR: alexandernivia@ustadistancia.edu.co

Colombia has an agro-ecological diversity that favours the implementation of milk production systems. Dairy farming is an integral part of the rural economy and makes a positive contribution to the nutrition and income of families. The objective of this study was to classify milk production systems in the community of El Peñon (Municipality of Sibate, Colombia), and analyse the results in connection to the concept of food security. The study evaluated components related to production levels and administration using variables such as (i) location, biophysical aspects, use and management of land (ii) forage resources and feed (iii) animal resources (iv) animal reproduction and health (v) milk production and marketing, and business management (vi) labour, infrastructure and equipment and (g) owner information. Eighteen dairy farms located in the study area were analysed and thereby classified using multiple correspondence analysis and descriptive study. The information was obtained from the milk production systems using a questionnaire. The analysis of conglomerates allowed us to identify heterogeneous production models due to their diverse production conditions and the different sizes of productive units. Milk producers were typified in 4 groups as specialised dairy (33%), semi-specialised dairy (17%), small-scale dairy (28%), and family-owned dairy farms (22%). The dairy systems represent a productive potential to support food security, especially small-scale systems. For this reason, it is important to implement efficient technological models in small-scale dairy systems to contribute to the improvement of food security for the population.

1. Introduction

Food is one of the basic needs of human beings, and according to the FAO, the size of the global population and its accelerated growth is the biggest problem and the most serious threat to humanity (FAO 2002; 2014; 2019a). One of the current problems of the worldwide population is malnutrition due to a lack of nutrients, protein, and micronutrients to meet the basic needs to maintain normal functions, growth, and development (Latham, 2002; Pinstrup-Andersen, 2009). Malnutrition promotes the development of diseases and undesirable physical conditions (FAO, 2009a; Weiler et al., 2015). FAO reports for the years 2015 and 2016 the prevalence of malnutrition in the world, and the values are 794 (10.8%) and 815 (11.0%) million people, respectively. These figures show an increase in the number of undernourished and hungry people, prin-
cipally a result of the following causes: natural disas-
ters, armed conflicts, population growth, and poverty
(FAO, 2009b).

It is estimated that the growth of the population could
soon overtake food production and supply (Burchi &
De Muro, 2016). This estimate is mainly due to an in-
crease in the population of urban areas due to high
fertility rates, migration from rural areas to cities, and
inequality in the distribution of food, which is grad-
ually affecting a global financial crisis. In this regard,
studies have been conducted at a global level for the
development of policies that would help mitigate the
dynamics of poverty and solve the problems con-
ected to the challenge of hunger (Borch & Kjærnes,
2016; Gohar & Cashman, 2016; Myers & Caruso,
2016; Martin et al., 2016; Lipton & Saghai, 2017; Mor-
agues-Faus, 2017; Leventon & Laudan, 2017). Accord-
ing to FAO (2002), milk is considered one of the most
nutritious food types, because it provides proteins,
carbohydrates, fat, minerals, and vitamins of high bi-
ological value.

Based on the previous considerations, agricultural
producers have the challenge of increasing productivi-
ty to meet the needs of the population. Livestock plays
an important role in the livelihoods of millions of milk
producers in developing countries. Livestock farming
provides approximately 26% of protein and 13% of
the total calories consumed by people (FIDA, 2016).
The dairy sector has been recognised for its leadership
role in sustainable practices for several years. In 2019,
world milk production was 852 Mt (OECD-FAO,
2020). The expansion of production originates main-
ly from India, Pakistan, China, the European Union
and Brazil and on a smaller scale in countries such as
Australia, Colombia and Argentina (FAO, 2019b).
Colombia reported total production of 7,301 million
litres of milk for 2019 (FEDEGAN, 2020).

In the livestock sector, it has been determined that
Colombian cattle production is made up of a varie-
ty of production models within a heterogeneity of
systems, mainly of dairy cattle. Authors have classi-
ified worldwide milk production systems and contri-
butions to food security in several ways: as tropical
or dual-purpose cattle, intensive dairy, and small-

The study was conducted with milk producers in the
farming area El Peñón (Municipality of Sibate, Cundi-
namarca, Colombia), geographically located at coor-
dinates 4° 30'12 "N and 74° 20'47W, at 2,767 metres
above sea level (Figure 1). A cold climate, an average
temperature of 13.5 °C, and a rainfall of 723 mm
characterise the region. The region's economy is pre-
dominantly built on agriculture, and for this reason, it
was chosen for the study.

2.2. Data collection

This study was carried out between November 2018
and July 2019. Information regarding the producers
and milk production systems was collected through
a series of both semi-structured and open interviews
using the survey method. For the survey, the study
region was selected given the high heterogeneity and
variability of the farming and livestock production
systems, to provide adequate representation of the
technical, socioeconomic, and biophysical diversity
of the region. The selection of respondents was made
through non-probabilistic snowball sampling, where
the sample of producers obtained corresponded to the
entire population under study.

The participants were active milk producers, and the
focus group was comprised of 18 producers, which is
the total population of producers in the studied re-
gion. The study evaluated components related to the
product levels and administration of these systems us-
ing variables such as (i) location, biophysical aspects,
use and management of land (ii) forage resources and
food (iii) animal resources (iv) animal reproduction and health (v) production of milk, marketing, and business management (vi) labour, infrastructure and equipment and (g) owner information.

2.3. Statistical analysis

The analysis of the data collected was carried out through the evaluation of quantitative and qualitative variables, through multiple correspondence analysis (MCA) and descriptive studies using the statistical package SAS (Statistical analysis system, version 9.4).

3. Results

The information obtained in this study allowed the identification of different types of milk production systems according to structural, technical, and production characteristics.

Figure 2 shows the results of the cluster analysis of milk producers. Results were classified into four groups of milk production systems, according to the similarities of the variables. The groups identified were classified as specialised dairy (33%), semi-specialised dairy (17%), small-scale dairy (28%), and family-owned dairy farms (22%). It was evidenced that dairy cattle and milk production is one of the traditional trades for the majority of families living in the region studied. Half of the current production systems correspond to small producers, which represent productive potential and food security.

There are diverse dairy production systems in the study region that incorporate different technological models for obtaining dairy products. One of the main components of these systems is the introduction of different breeds. However, the Holstein breed is used at a proportionately high level due to its productivity and adaptability to existing environmental conditions. Pastoral systems dominate dairy production in the study region. All production systems also presented a similar proportion of grassland established with improved pastures (80%). The Pennisetum clandestinum was more common in dairy systems.

The diversity found among the systems reflects the implementation of productive models with different levels of several factors, such as the use of technology,
inclusion of productive strategies related to the management of forage resources, supplements and food by-products, use of animal resources of high genetics, infrastructure, and manpower. It should be noted that these cattle production systems are developed in different micro-ecosystems with different degrees of intensification of variables and heterogeneous socio-economic strata.

Table 1 shows the average values of the production parameters for milk production systems in the region of study.

Family-owned dairy farms (Group 1) correspond to 22% of the studied populations and are characterised by having on average less land (1.8 + 1.1 ha) and fewer animals (3.5 + 2.7). The lack of productive technology use characterises these systems and the mean values of milk production/cow/day and total are 6.7 + 2.8 and 8 + 6.8 litres, respectively. In terms of applying labour to livestock development, work is mainly limited to the owner and their spouse. This study reveals that milk producers in these systems are among the least educated people in the region, and this can be a problem when it comes to incorporating new technologies. In regards to small-scale dairy (Group 2), which corresponds to 28% of the population, it was found that the characteristics of the production model analysed were similar to those of Group 1. However, it reported higher values for land size (14 + 3.2 ha), number of animals (17.9 + 4.3), milk production/cow/day (10 + 3.1 litres) and milk production/day (82 + 7.9 litres). Another key characteristic of family-owned dairy farms and small-scale dairy groups is the lack of technical assistance, access to extension services, and the high costs of inputs.

On the other hand, semi-specialised dairy systems (Group 3) correspond to only 17% and are characterised by the inclusion of production technologies that focus on improving nutritional and genetic components. These production technologies are done by pro-
viding supplements to animals, and crossing breeds with high genetic value. These systems have more land (22.4 + 6.1 ha) which holds a larger number of animals (28.3 + 5.5) with higher levels of milk production/cow per day (13.3 + 3.2 litres).

Regarding the characteristics of Group 4, specialised dairy systems correspond to 33% and have the most land (118.4 + 60.4 ha) and the largest number of animals (124.7 + 29.6). This typology reports the highest level of milk production/cow per day compared with the other systems, as well as the higher insertion of labour to carry out activities related to production. Furthermore, they employ the most productive strategies, including rotational grazing systems with improved foraged grasses and alternative animal supplementation. Besides, this group also works to improve nutritional, genetic, and sanitary components. To this end, the group uses soil fertilisation practices to increase biomass production, as well as reproductive biotechnologies like artificial insemination using animals with high-value genetics. They also use biosecurity and vaccination plans.

Another factor is that while small-scale dairy system producers only have access to information via radio and television, semi-specialised and specialised dairy producers used mobile phones to obtain up-to-date information and access professional technical support.

Table 1. Parameters of milk production systems in the area of El Peñon.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family-owned dairy farms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of dairy farmers</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>% of the sample</td>
<td>22</td>
<td>28</td>
<td>17</td>
<td>33</td>
</tr>
<tr>
<td>Farm size (ha)*</td>
<td>1.8 ± 1.1</td>
<td>14 ± 3.2</td>
<td>22.4 ± 6.1</td>
<td>118.4 ± 60.4</td>
</tr>
<tr>
<td>Animals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numbers of animals *</td>
<td>3.5 ± 2.7</td>
<td>17.9 ± 4.3</td>
<td>28.3 ± 5.5</td>
<td>124.7 ± 29.6</td>
</tr>
<tr>
<td>Production cows *</td>
<td>1.2 ± 0.9</td>
<td>8.2 ± 2.7</td>
<td>13.6 ± 2.1</td>
<td>61.9 ± 12.5</td>
</tr>
<tr>
<td>Dry cows *</td>
<td>0.8 ± 1.1</td>
<td>2.9 ± 1.3</td>
<td>4.6 ± 1.2</td>
<td>20.2 ± 7.9</td>
</tr>
<tr>
<td>Heifers *</td>
<td>0.6 ± 0.9</td>
<td>2.8 ± 0.7</td>
<td>4.5 ± 1.1</td>
<td>26.1 ± 7.7</td>
</tr>
<tr>
<td>Calves *</td>
<td>0.7 ± 0.3</td>
<td>3.4 ± 0.6</td>
<td>4.7 ± 0.9</td>
<td>15.1 ± 3.9</td>
</tr>
<tr>
<td>Bulls*</td>
<td>0.3 ± 0.5</td>
<td>0.4 ± 0.5</td>
<td>0.6 ± 1.1</td>
<td>1.6 ± 1.3</td>
</tr>
<tr>
<td>Production</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk production/cow/day (litres)*</td>
<td>6.7 ± 2.8</td>
<td>10 ± 3.1</td>
<td>13.3 ± 3.2</td>
<td>16.5 ± 3.7</td>
</tr>
<tr>
<td>Milk production/day (litres)*</td>
<td>8 ± 6.8</td>
<td>82 ± 7.9</td>
<td>180.9 ± 6.6</td>
<td>1021.4 ± 83.2</td>
</tr>
<tr>
<td>Labour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Owner</td>
<td>1</td>
<td>1</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>Spouse</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Administrator</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>Milking staff</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Day labourers</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.8</td>
</tr>
<tr>
<td>Commercialisation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-consumption (litres)*</td>
<td>1.5 ± 0.5</td>
<td>3 ± 1.4</td>
<td>2.6 ± 0.6</td>
<td>9.8 ± 1.7</td>
</tr>
<tr>
<td>Sale (litres)*</td>
<td>6.5 ± 2.2</td>
<td>79 ± 6.4</td>
<td>178.3 ± 5.9</td>
<td>1011.6 ± 30.1</td>
</tr>
</tbody>
</table>

(%) Percentage of dairy farmers that belong to the milk production system.

* Values represented in average ± standard deviation.
4. Discussion

Milk production systems are concentrated around the main cities and municipalities where the demand for milk is highest. Farms in the region were grouped based on multivariate analysis, taking the production system into account, to identify them according to their use of technology.

In general, all the systems studied performed milking twice a day and marketed their milk locally. As described above, milk production systems have a high degree of variability in their productive indicators, given the number of technologies that could directly affect the productivity, profitability, and competitiveness. Therefore, the productivity of these systems has an indirect relationship with the size of the herd and the technological model implemented. According to Holmann et al. (2003), the improvement of competitiveness is associated with the size of the herd.

The diversity within the different systems is due to technological and economic factors and organizational issues that have allowed the adoption of uneven technological innovations within dairy systems, resulting in different levels of productivity and profitability (Sraïri & Lyoubi, 2003; Köbrich et al., 2003; Gaspar et al., 2007; Giorgis et al., 2011; García et al., 2012; Gelasakis et al., 2012; Nivia et al., 2018).

On the other hand, dairy farming is a basic part of the rural economy. This study has shown that as milk producers have made technological changes and investments, their competitiveness and productivity have improved, and this has increased net income per hectare. Thus, the specialised dairy producers report the highest values in the production of milk/cow per day. Dairy farming is a highly labour-intensive industry, and small-scale dairy and family-owned dairy farms rely greatly on family labour.

Furthermore, the typification of milk production systems showed that half of the systems are distributed between family-owned dairy farms and small-scale dairy. These categories contribute significantly to the total milk production in the region. For this reason, small-scale dairy producers can contribute a remarkable share to the total milk production of the country and can be a viable instrument to stimulate economic growth and reducing poverty (Bennett et al., 2006). A general analysis of milk production systems in Colombia has allowed us to identify which systems have begun to use technology to advance milk production, specifically in areas such as genetic improvement and food and nutrition programs. To a large extent, this explains the production growth during the past few years. However, the preceding is mainly due to specialised dairy systems, which have been able to deploy new technologies.

Despite these factors, the dairy industry in Colombia has shown a lack of profitability. One of the main problems in the milk production sector is the lack of technical assistance and the high costs of inputs. The limited access to extension services has been a limiting factor for the improvement of producer productivity and dairy product supply. Therefore, the results showed that small-scale dairy system producers only have access to information via radio and television. In contrast, semi-specialised and specialised dairy producers used mobile phones to obtain up-to-date information and to access professional technical support. Small-scale production systems represent a productive potential in the region and therefore require the implementation of efficient technological models. This study has concluded that small milk production systems can contribute to high levels of food security by offering safe and nutritious products to the population. Moreover, a growing demand for livestock products over the next 20 years, which could more than double, are mainly related to factors such as urbanisation, economic growth and changing consumption patterns in developing countries. In this way, they can meet the population’s dietary needs and food preferences for an active and healthy life, as described by the FAO (2002). This analysis supports the fact that the adoption of technology by family-owned dairy farms, small-scale dairy, and semi-specialised dairy (corresponding to 75% of the studied population) is essential to intensify milk production and thus ensure greater performance and productivity. Also, a market-oriented dairy enterprise approach is proposed as a strategy to increase the income of small producers (Bennett et al., 2006). On the other hand, small-scale livestock production is mainly based on family farms and is crucial for the livelihoods of the rural poor, food security and the creation of employment.
The dairy industry has experienced enormous changes over the last few decades due to the implementation of economic policies and the use of new technology. World milk production grew by 1.3% in 2019 to around 852 Mt of which 81% corresponds to cow’s milk. This growth is attributed to increased production and not to herd growth. Strategies as performance growth drivers include optimising milk production systems, introducing better genetics, improving animal health, and improving efficiency in feeding (OECD-FAO, 2020).

Milk production in Colombia grew 2.3% in 2018, with a total of 7,257 million litres, of which only 47.06% were collected. In 2019, a total of 7,301 million litres of milk was produced, with a low increase of 0.6% compared to the previous year, related to the climatic factor, primarily due to the rainy seasons (FEDEGAN, 2020).

Milk production systems are mainly classified as specialised, dual-purpose, and small-scale, which contribute to the volume of national production in different proportions. However, small-scale dairy producers contribute a remarkable share to the total milk production of the country. Finally, the Colombian State must adapt technical assistance policies focused on this type of producer.

In general, the greatest global challenge facing cattle production systems is linked to changes in the availability of food for animals, both in terms of quantity and quality (specifically concerning protein levels). For this reason, from a development perspective, it is appropriate to adapt research areas. Studies should focus on milk production systems in rural areas that incorporate models of feeding intended to increase the availability and quality of forage, as well as the animal population per hectare (Tapasco et al., 2019).

The genotypes present in production systems are a constraint for productivity, particularly in rural areas based on small-scale. However, the genetic resources in the region studied reflect the considerable size of the population and the biodiversity that exists between them.

5. Conclusion

In conclusion, the proposed methodology identified four groups of milk production systems based on their productive and administrative characteristics, starting with the analysis of conglomerates. This diversity reflects the variability of the productive model, in keeping with the level of adoption and use of technology and the inclusion of productive strategies. This study identified that the perception of the milk producers of the new technologies was the main limitation to adopt new technologies. Biophysical, agronomic, and socioeconomic factors that affect milk producers are all attributed to the yield gap. The adoption of technology is affected by factors such as farm size, availability of capital and labour, education, and land ownership. Our findings showed that Small-scale and Family-owned dairy farms represent a productive potential for food security, given the number of existing producers and the ability to implement efficient technological models. Training is, therefore, essential to contribute to the decrease of the starving population and to achieve an effective impact on sustainable rural development in areas where milk production can be competitive.

Acknowledgements

To Santo Tomas University for financing the project and to the dairy producers of El Peñon for providing information.

Conflict of Interests

The authors hereby declare that there is no conflict of interest. Besides, the funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

References

Burchi, F., & De Muro, P. (2016). From food availability to nutritional capabilities: Advancing food se-
foodpol.2015.03.008

Castillo, D., Tapia, M., Brunett, L., Marquéz, O.,
Terán, O., & Espinosa, E. (2012). Evaluation of so-
cial, economic and productive sustainability of two
agroecosystems of small-scale milk production at the
Amecameca Municipality, Mexico. Revista Científica
udoagricola.orgfree.com/V12N3UDOAg/V12N-
3Castillo690.pdf

Corzette-Arriola, J., Rossing, W.A.H., Massiotti, R.D.A.,
Leverages for on-farm innovation from farm typolo-
gies? An illustration for family-based dairy farms in
north-west Michoacán, Mexico. Agricultural Systems,
135,66-76. doi:10.1016/j.agsy.2014.12.005

FAO. (2002). The State of Food Insecurity in the
org/3/y7352e/y7250e.pdf

FAO. (2009a). World Summit on Food Security -
WSFS 2009/2. Draft Declaration of the World Summit
fao.org/fileadmin/templates/wsfs/Summit/Docs/Dec-
laration/WSFS09_Draft_Declaration.pdf

FAO. (2009b). How to Feed the World in 2050. Ret-
wsfs/docs/expert_paper/How_to_Feed_the_World_
in_2050.pdf

FAO. (2014). Institutional framework for the right
to adequate food. Thematic study 2. Retrieved from
http://www.fao.org/3/a-i3891e.pdf

FAO. (2019a). Fifteen years implementing the Right
to Food Guidelines. Reviewing progress to achieve the
org/3/ca6140en/CA6140EN.pdf

FAO. (2019b) Food Outlook - Biannual Report on
ained from http://www.fao.org/3/CA6911EN/
CA6911EN.pdf

en 2017. Bogotá. 2-44. Retrieved from https://esta-
disticas.fedegan.org.co/DOC/download.jsp?pReal-
Name=BalanceSectorial_2017.pdf&iIdFiles=667

produccion-0

FEDEGAN. FNA. (2020). Balance y Perspectivas del
Perspectivas_2019_2020.pdf&iIdFiles=683

FIDA. (2016). Desarrollo de la ganadería en pequeña
escala. Nota sobre la ampliación de escala. Tan-
zania: Programa de Desarrollo del Sector Agrícola
documents/38714170/40237450/Scaling+up+Re-
results+in+Smallholder+Livestock+Development_s.
pdf/7a33c96-ade3-4ce4-903c-62431cada563

Farm and socioeconomic characteristics of smallhold-
er milk producers and their influence on technology
adoption in Central Mexico. Tropical Animal Health
and Production, 44(6),1199–1211. doi: 10.1007/
s11250-011-0058-0

Gaspár, P., Mesías, F.J., Escribano, M., Rodríguez de
Ledesma, A., & Pulido, F. (2007). Economic and man-
agement characterization of dehesa farms: implica-
tions for their sustainability. Agroforestry Systems,
71(3),151-162. doi: 10.1007/s10457-007-9081-6

Gelasakis, A.I., Valergakis, G.E., Arsenos, G., & Banos,
G. (2012). Description and typology of intensive Chi-
os dairy sheep farms in Greece. Journal of Dairy Sci-
ence, 95(6),3070-3079. doi: 10.3168/jds.2011-4975

Giorgis, A., Perea, J.M., García, A., Gómez, A.G., An-
gón E., & Larrea, A. (2011). Technical and Econom-
ical Characterisation and Typology of Dairy Farms in
La Pampa (Argentina). Revista científica FCV-
cientificalluz.org/index.php/cientifica/article/

Tapasco, J., LeCoq, J.F., Ruden, A., Rivas, J.S., & Ortiz, J. (2019). The Livestock Sector in Colombia: Toward a Program to Facilitate Large-Scale Adoption of Mitigation and Adaptation Practices. Frontiers in
Sustainable Food Systems, 3(61),1-17. doi: 10.3389/fsufs.2019.00061
