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Abstract 

The high cost of maize in Kenya is basically driven by East African regional commodity demand 
forces and agricultural drought. The production of maize, which is a common staple food in Ken-
ya, is greatly affected by agricultural drought. However, calculations of drought risk and impact 
on maize production in Kenya is limited by the scarcity of reliable rainfall data. The objective of 
this study was to apply a novel hyperspectral remote sensing method to modelling temporal 
fluctuations of maize production and prices in five markets in Kenya. SPOT-VEGETATION NDVI 
time series were corrected for seasonal effects by computing the standardized NDVI anomalies. 
The maize residual price time series was further related to the NDVI seasonal anomalies using 
a multiple linear regression modelling approach. The result shows a moderately strong positive 
relationship (0.67) between residual price series and global maize prices. Maize prices were high 
during drought periods (i.e. negative NDVI anomalies) and low during wet seasons (i.e. positive 
NDVI anomalies). This study concludes that NDVI is a good index for monitoring the evolution 
of maize prices and food security emergency planning in Kenya. To obtain a very strong correla-
tion for the relationship between the wholesale maize price and the global maize price, future 
research could consider adding other price-driving factors into the regression models.

Introduction
Drought is one of the most frequent climate-related 
disasters occurring across large portions of the African 
continent, often with devastating consequences for 
food security and agricultural households (Andrea et 
al., 2011; Rojas et al., 2011; FEWSNET, 2010; Dinku et al., 
2007). Understanding the probability of drought occur-
rence is of basic importance for risk management pro-
grams and for efficient food-aid delivery (Rojas et al., 
2011). Drought is an extended period of abnormally dry 
weather that causes water shortage and damage to veg-
etation (Singh et al., 2003). It can further be defined as a 
creeping and recurrent natural phenomenon which cre-
ates impacts that can affect large areas of land, lasting 
for several months (Wilhite, 2005). For example, Rojas et 
al. (2011) reported that countries in Eastern Africa (Ethi-

opia, Eritrea, Somalia and Kenya) were worst hit with wa-
ter shortage between 1984 and 2000. The consequence 
of this prolonged water shortage was famine (Andrea 
et al., 2011). Agricultural drought impacts food security 
because it can disrupt crop development and produc-
tivity (Ifejika et  al., 2008), and consquently, hinder food 
availability. Agricultural drought is referred to as a period 
with declining soil moisture, which consequently leads 
to crop failures in areas where it is not possible to imple-
ment irrigation (Mishra et al., 2010). 

Kenya is an agrarian country that primarily relies on rain-
fed agriculture. However, rainfall is erratic in most parts 
of the country (Kangasniemi et al., 1993). Usually, food 
insecurity occurs between August and November of 
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every year. Additionally, food insecurity can extend be-
yond this period in times of drought, flooding, and so-
cial strife (FEWSNET, 2010). In Kenya, maize is a widely 
consumed staple food (Grace et al., 2014). Kenya has ex-
perienced variations in maize production over the years. 
This is mainly due to weather variability (Kangasniemi et 
al., 1993).  In order to bridge the gap between the quan-
tity produced and quantity demanded, high amounts 
of maize were imported into the country over the years 
(Kibaara, 2005). Also, the Kenyan government intro-
duced a livelihood zoning system (Grace et al., 2014). 
The livelihood zoning mechanism divides the country 
into homogenous areas such that the people within a 
particular zone share almost the same pattern of liveli-
hood options, including their pattern of obtaining food 
and generating income, as well as their market oppor-
tunities ( Grace et al., 2014; FEWSNET, 2010; Lewis et al., 
1998). According to Famine Early Warning Systems Net-
work (FEWSNET) (2011, 2010, 2009) and Nyoro (2002), 
there is always a small population group that suffers 
from some form of food insecurity. The National Cereals 
and Produce Board (NCPB) has the mandate of procur-
ing and selling maize at administratively determined 
prices in Kenya (Jayne et al., 2008). NCPB maize prices 
are usually uniform at all depots throughout the coun-
try and typically remain fixed within a particular market 
season; however, in some cases the prices are reviewed 
by the government within the same year in response to 
changes in crop yield forecast (Jayne et al., 2008).

Monitoring agricultural production in Kenya can pro-
vide important information about food security over 
time (AATF, 2010; Dinku et al., 2007). A hyperspectral re-
mote sensing approach has been widely used to model 
spatial and temporal variability of crop vegetation over 
large areas (Rojas et al., 2011; Jacquin et al., 2010; Dinku 
et al., 2007; Wylie et al., 2002). The most widely used hy-
perspectral remote sensing technique is the Normalized 
Difference Vegetation Index (NDVI) developed by Rouse 
et al. (1974). According to Rouse et al. (1974), NDVI can 
generally be calculated from vegetation canopy reflec-
tance in the red (670 – 680 nm) and near-infrared (750 
– 850 nm) wavelengths using broad-band remotely 
sensed data. Therefore, NDVI is the most commonly used 
multi-spectral index of canopy greenness in relation to 
vegetation structural aspects, such as canopy cover and 
leaf area index (LAI) (Nguyen & Lee, 2006). Previous stud-
ies on NDVI indicate the possibility of estimating visi-
ble vegetation reflectance indices, such as chlorophyll 
a and b pigments (Gitelson & Merzlyak, 1997).  Black-
burn (1998) further states that estimating the concen-
trations of vegetation pigments with NDVI techniques 
is dependent on factors such as structure of the cano-
py, phenology and environmental stress (e.g. drought). 
Calculation of drought risk and its impact on maize 

production in Kenya is limited by the scarcity of reliable 
rainfall data (Dinku et al., 2007). Despite the coverage of 
operational weather stations in Kenya, large spatial gaps 
and independent stations often provide discontinuous 
data (FEWSNET, 2011). For these reasons, rainfall meas-
urements are commonly replaced by data generated by 
atmospheric calculation models or satellite observations 
(Rojas et al., 2011). Nowadays, free data are available for 
vegetation indices derived from NDVI approaches. An 
NDVI approach is capable of identifying spatial and tem-
poral patterns of seasonal change in vegetation health 
and in distinguishing forest from other vegetation types, 
such as grasses and shrubs, so it is very useful for calcu-
lating and monitoring greenness condition in agricultur-
al crops (Mutanga & Skidmore, 2004; Wylie et al., 2002). 

The aim of this study is to apply a novel remote sens-
ing method to modelling temporal fluctuations of maize 
production and prices in five markets in Kenya. In doing 
so, we assessed how maize price relates to drought con-
ditions during the period from September 1998 to Au-
gust 2011. The SPOT-VEGETATION NDVI remote sensing 
approach was adopted to investigate and model the re-
lationship between agricultural drought and maize pric-
es in order to improve food security in Kenya.

Materials and Methods

Study area 
Kenya lies along the equator in east-central Africa on the 
coast of the Indian Ocean. The country has a total area 
of 582,650 square kilometres (Andrea et al., 2011). Ken-
ya shares borders with Somalia to the east, Ethiopia to 
the north, South Sudan to the northwest, Uganda to the 
west, Tanzania to the southwest, and the Indian Ocean 
to the southeast (FEWSNET, 2011). In the north, the land 
is arid, while the fertile Lake Victoria Basin is located in 
the south-western corner. The eastern depression of the 
Great Rift Valley separates the western highland from the 
lowland coastal strip. The country is situated between a 
latitude of 50 South and 5.5o North and longitude of 34o 
and 42oEast (Andrea et al., 2011). Figure 1 illustrates the 
distribution of sampled markets. 

The World Resources Institute (2007) reported that the 
average annual rainfall in Kenya ranges between 250 
mm and 2,500 mm. The country experiences bimodal 
rainy seasons: one from March to May (featuring long 
periods of rain) and one from October to December (fea-
turing short periods of rain). Ariga et al. (2006) specifi-
cally state that the water footprint of Kenya in relation 
to crop production was 18.1 Gm3/year between 1996 
and 2005. However, Kenya was hit with severe droughts 
in the past quarter century, including the following 
years: 1983/1984, 1991/1992, 1995/1996, 1999/2001, 
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2004/2005 and 2009/2010 (Andrea et al., 2011; Boken 
et al., 2005). The areas most affected by the droughts 
were the marginal agricultural lands in the north-east-
ern, north-western, southern and south-eastern parts 
of Kenya (FEWSNET, 2011; Andrea et al., 2011; Boken et 
al., 2005). These regions also faced variations in maize 
production between July and November, 2011 (FEWS-
NET, 2011), primarily because the drought occurrences 
caused the average maize production outputs (Table 1) 
in Kenya to fluctuate.

Over the decade of 2002 to 2012, maize production var-
ied greatly in Kenya (Figure 2) because of a high inci-
dence of agricultural droughts, as well as limited use of 
technologies to overcome drought (Short et al., 2012; 
FEWSNET, 2011; Kangethe, 2011).

Jayne et al. (2008) asserts that the Kenyan government 
influenced wholesale maize market prices in the country 
through four main processes: (a) the official price setting 

process of the NCPB, with the difference between its 
purchase and sale prices relative to private sector market 
prices being the major determinant; (b) the restrictions 
on inter-district maize trade that were in operation; (c) 
stockholding policies of the NCPB as indicated by net 
inflows and outflows from NCPB depots; and (d) tariff 
and trade policy, including informal transaction costs of 
illegal cross-border trade. However, FAO (2011) showed 
that the quantity of maize imports and exports in Ken-
ya fluctuated between 1998 and 2009 (Figure 3) due to 
weather variability. 

Since the last decade, the price of domestic staple foods 
in Kenya, such as maize, has been volatile and high 
(Kangethe, 2011; Nyoro, 2002).  Furthermore, the out-
come of Kangethe’s (2011) comparative analysis shows 
that imported maize was more expensive than locally 
produced maize in the period from 2000 to 2010 due to 
restrictive import policies implemented by the govern-
ment. Also, the rising dependence of Kenya on maize 

Kenyan Regions Maize Production 
(90kg/bag)

Maize Yield 
(bags/ha)

Rift Valley 13, 225, 039 20.50

Nyanza    3, 711, 215 14.10

Eastern    3, 903, 141 08.40

Western    4, 163, 878 18.50

Coast    1, 079, 389 08.30

Central    1, 047, 879 06.70

North Eastern             5, 520 02.20

Nairobi              6, 420 14.04

Table 1 : 2006 – 2009 Average maize production 
Source: Kangethe, 2011

Figure 2 : 2002 – 2012 maize production (metric tonnes) in Kenya 
Source: FEWSNET, 2013

Figure 1 : Livelihood map of Kenya showing the distri-
bution of sampled markets 
Source: modified from FEWSNET, 2013
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imports increases vulnerability to regional and global 
food price fluctuations (FAO, 2011; Nyoro, 2002). In other 
words, an increase or decrease in maize prices in any part 
of the World accordingly results in domestic food price 
volatility in Kenya. Figure 4 indicates the Kenyan domes-
tic staple food price volatility for the period 1995-2012, 
which includes maize.

Data 

a. SPOT VEGETATION Image Data: The data from 
satellite SPOT VEGETATION (Satellite Pour l’Obser-
vation de la Terre) is freely available for vegetation 

studies. SPOT VEGETATION has four spectral imag-
ing bands ranging from about 0.45 μm (blue light) 
to 1.67 μm (mid-infrared radiation). SPOT satellite 
has a field of view of 0 – 55o on both sides of the 
satellite tracking path. The SPOT satellite has a 
pixel size of 1.15 km x 1.15 km at nadir. The ma-
jor dataset used in this study is the high tempo-
ral frequency SPOT VEGETATION (SPOT VGT)1  S10 
imagery.  The SPOT time series data consist of 10-
day maximum-value composites at 1 km spatial 
resolution for the period September 1998 to Au-
gust 2011. The advantages of using maximum-val-
ued composite satellite imagery are two-fold: (a) 

Figure 3 : Maize production, imports and exports (metric tonnes), 1998-2009 (FAO, 2011)

Figure 4 : Kenyan domestic staple food price volatility (including maize), 1995 - 2012 (FAO, 2012)



      ISSN-Internet 2197-411x  OLCL 86280463212 UniKassel & VDW, Germany- December 2016

Future of Food: Journal on Food, Agriculture 
and Society, 4 (3)

a composite image is less influenced by cloud 
effects, sun-angle/shadow effects, aerosols, and 
water vapour effects; and (b) reduces directional 
reflectance and off-nadir viewing effects. To fur-
ther reduce the remaining atmospheric effects, 
an iterative Savitzky-Golay filter, as described by 
Huete et al. (2006), was applied to the time series 
of each pixel for temporal smoothing. 

b. Land Cover Map: The land cover GIS shape-
file for Kenya was freely obtained from AFRICOV-
ER2.  The AFRICOVER map for Kenya was produced 
from 1995 Landsat Thematic Mapper imagery 
with spectral bands: Red (band 4), Green (band 3) 
and Blue (band 2).The purpose for using this mo-
no-date land cover map of Kenya was to assess 
which areas were classified as water, bare, or urban 
in order to exclude these from further analysis. 

c. Field data: The Kenyan wholesale maize pric-
es used in this study were sampled at five market 
sites, namely, Nairobi, Mombasa, Kisumu, Eldoret 
and Nakuru. Maize wholesale price data collect-
ed in Kenya were further compared with Global 
maize price data.3  Maize prices were expressed in 
Kenyan shillings per 90 kg bag. Global wholesale 
prices (in US dollars per tonne) were converted to 
Kenyan shillings using the official exchange rate.4 

Methods

1. Analyses of market locations and maize prices in 
GIS software: 
Each sampled market is named after the Kenyan 
district5  in which it is situated. The center of each 
town was selected as the market place in ArcGIS 
10.1 software. Afterwards, a buffer of 25 km was 
generated around each market to indicate the 
potential area of maize farms that supplies each 
market. The 25 km buffered areas were intersect-
ed with the predicted maize fields to extract the 
maize growing areas around each market. Month-
ly SPOT-VGT NDVI was aggregated within the 
buffered maize areas to extract the time series of 
mean NDVI values for the maize area around every 
sampled market.

The maize map that was used for this study was 
generated using an unsupervised classification 
on the 1998 – 2011 SPOT-VGT NDVI time series. A 
total of 100 legend classes were tested and evalu-
ated using the separability model approach. The 
optimal number of classes was chosen as the one 
which had the highest average separability among 
all classes. The separabilty analysis produced a 
legend with 36 classes, with each class represent-
ing a separate NDVI profile. To assess which class 

best corresponds to maize area, a stepwise regres-
sion analysis was performed on the 36 NDVI class 
image data.
2. Temporal Dependence of Kenyan Wholesale 

Maize Price on Global Price:
The price data used in this study was obtained 
from the MIB (Kenyan Ministry of Agriculture’s 
Market Information Bureau). The following four 
criteria were adopted to select the markets used 
in this research: (a) the sites were selected because 
the remote sensed images obtained over their lo-
cations were almost cloud-free; (b) sampled mar-
kets were located within the grain basket zones 
of Kenya; (c) for the Nairobi district, where there 
is more than one market, an average of three mar-
kets was sampled. Selected Nairobi markets for 
urban maize consumers were in proximity to ru-
ral communities that are located within the grain 
basket zones6  of Kenya; and (d) apart from Nairo-
bi, the other sampled districts have only one par-
ticular day per week set aside as their market day. 
As such, maize price data were only recorded on 
the respective market days for the districts other 
than Nairobi. 
3. Temporal Dependence of  Wholesale Maize 

Price on NDVI Seasonal Anomalies:
a. Mean-NDVI series and price series for each buff-
er during the observation period were visualized 
in a graph to analyse their temporal behaviours 
(Lewis et al., 1998). Both NDVI and wholesale price 
series were decomposed into three components: 
observed, trend and seasonal. The NDVI values 
were calculated with a simple additive R-statistical 
model:

Where,  t = time,   x  = observed series,  m = the 
trend,   s = seasonal components and   z = an error 
term.

The purpose of Mean-NDVI analysis is to visualize 
the seasonal and trend variations in both series. 
This is because many time series are characterized 
by a trend and/or seasonal effects (Metcalfe et al., 
2009) which could result in spurious regression 
(Udelhoven et al., 2009).The NDVI series is more 
affected by seasonal variations than the trend. 
Seasonal variation strongly affects the structure 
of autocorrelation of a time series and could also 
result in spurious regression (Udelhoven et al., 
2009).  Price series, on the other hand, exhibit 
more of a trend variation than seasonal variation; 
therefore, the price series was not corrected for 
the seasonal variation. The seasonal variation 

X
t 
= m

t
 + s

t
+z

t
 Eq. 1 
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of the NDVI series was removed by computing 
the standardized seasonal anomalies (z-score) 
in Timestat V1.0 GIS software. The baseline 
period was September 1998 to August 2011. This 
method was used by Udelhoven et al. (2009) while 
assessing the relationship between temperature 
and rainfall in Spain as in Equation 2:

Where Mean(NDVI)j and S denote the long term 
means and standard deviation of month j and t are 
the time index indicating the respective years. 

b. Maize residual price series and NDVI seasonal 
anomalies were visualized prior to regression 
analysis. The purpose of doing this was to visually 
examine whether a temporal relationship exists 
between these variables. Residual price series 
and lagged NDVI seasonal anomalies were 
also visualized in a scatter plot to determine 
the direction of the correlation between these 
variables. Furthermore, Pearson correlation 
coefficient was used to evaluate the strength of 
the relationship between residual price series 
and lagged NDVI seasonal anomalies of the 
aggregated pixel of the buffered areas. Several 
other studies have demonstrated that NDVI is 
correlated with net primary production and crop 
yield (Malmström et al., 1997; Pettorelli et al., 2005;  
Prince et al., 1995). Hence, the residual price series 
after the growing season was related to the lagged 
NDVI anomalies during the growing season using 
multiple linear regression.  In this case, only four 
lags of NDVI seasonal anomalies were computed 
(Equation 3) because the total length of the 
growing season was approximately six months. 
The purpose of carrying out this computation is 
based on the fact that a vegetation production 
anomaly during the growing season is an indicator 
for price after harvest (Brown et al., 2006).

Where NDVIA = monthly NDVI anomalies, b= the 
impulse response weight vectors describing the 
weight assigned to the current and past monthly NDVI 
anomalies series, a = constant,  µ

1
 = the model residual, 

and μ
t
 = the residuals from the optimal lag identified 

from the model of wholesale price and global price. 
Note that NDVIA in this case is the NDVI of seasonal 
anomalies.

Results and Discussion

1. Temporal Dependence of Kenyan Wholesale Maize 
Price on Global Price:

Figure 5 shows the NDVI output (5 c) derived from the 
SPOT VGT image on 23 August, 2011 of a maize farm 
in Nairobi. The spectral heterogeneity observed in the 
NDVI image could be attributed to the appearance of the 
maize cobs (yellow) and the variation in the greenness 
of the maize leaves in Figure (5a) since the crop is at a 
mature stage.

Figure 6 shows a price distribution for wholesale maize 
at each of the study sites and the global price of maize 
for the period under study. The wholesale maize prices 
in major urban centres of Kenya are more related with 
one another than with the global price. However, the 
regression results show a moderately strong correlation 
(0.67) between the Kenyan market wholesale prices 
and the global maize prices.  This outcome corresponds 
to the fact that Kenya is one of the countries in Africa 
that is exposed to higher international prices for food 
commodities due to insufficient stocks and budgetary 
resources to adequately protect the food security of the 
country (Grace et al., 2014; FAO, 2011; Jayne et al., 2008). 
Kenya was a net importer of maize and had appealed 
for external assistance and food aid during seasons of 
maize shortage (Jayne et al., 2008). There is a deviation 
of the wholesale market prices in Kenya from the global 
prices in 2009. This could be the result of one of the 

Z
tj 

= 

NDVI
tj 

 - Mean (NDVI)
j

          S(NDVI)
j

Eq. 2

 
μ

1
= a+ b

1
(NDVIA)

t 
+ b

2
 (NDVIA)

t -1
+......... b

2
 (NDVIA)

t - 4
+ NDVIA

max
+

 
μ

t Eq. 3

Figure 5 : SPOT VGT NDVI spectral reflectance of mature maize: 5 (a) = mono-cropped maize field at inflorescence 
stage at 010 21’ 59’’ S and 360 44’ 17" E (WGS84) in Nairobi Kenya; 5 (b) = 1 km2 SPOT VGT Satellite image (RGB =421); 
and 5 (c)= pixel-based NDVI output.
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worst droughts experienced in Kenya occurring during 
that period. The wholesale prices were generally high in 
2011 due to the delay of the long rains in the country. 
The global shocks in food prices could, therefore, have 
impacted local food prices in Kenya. Global shocks 
in food prices are due to  multiple factors, such as: (a) 
drought in Australia, (b) policies to promote the use 
of biofuels, which increases demand for maize, (c) 
depreciation of the US Dollar and d) long-term economic 
growth in several large developing countries (FAO, 2011). 
For example, increases in oil prices made biofuels more 

profitable, thereby diverting maize from food markets 
to biofuel factories. Furthermore, depreciation of the 
US dollar was responsible for 15 - 27% of the increase in 
dollar-denominated food prices between 2007 and 2008 
(Minot, 2010).

The outcomes of this study could have been affected by 
limited price data. Brown et al. (2006) used 445 markets 
in the analysis of millet price-NDVI correspondence. The 
assumption that most of the maize sold in each market 
are from the 25 km buffer region could possibly be 

Figure 6 :  Temporal plot of Kenyan wholesale maize prices compared to global prices

Figure 7 :  Maize residual price series (in Kenyan shillings/90 kg bag) and mean NDVI of Nakuru 
from September 1998 - August 2011

Figure 8 :  Results for the decomposed NDVI and price series data of the Mombasa market
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the reason why the results of this present study do not 
agree with that of Brown et al. (2006). For our study, the 
maize coming into the sampled markets may not only 
be supplied from within a 25km market buffer zone. 
Therefore, an on-spot data collection of maize prices 
could possibly improve the outcome of this experiment. 
Furthermore, an inclusion of other price-driving factors 
(such as regional pricing regime, export restrictions, cost 
of farm implements, social strife, etc.) into the regression 
models could produce a stronger regression result from 
the correlation between Kenyan maize wholesale price 
and the NDVI anomalies.

2. Temporal Dependence of Kenyan Wholesale Maize 
Prices on NDVI Seasonal Anomalies

Figure 6 illustrates the temporal characteristics of mean-
NDVI and price series for the Nakuru market. The NDVI 
series follows a seasonal pattern, while price series 
fluctuates without a clear seasonal pattern. Figure 7 
does not indicate a strong correspondence (r = - 0.479) 
between price and NDVI. Nevertheless, the trend is 
evident that maize prices were high during drought 
period (i.e. negative NDVI anomalies) and low during 
wet seasons (i.e. positive NDVI anomalies). 

The reason for this outcome is because of the effect of the 
global prices on the Kenya wholesale price and seasonal 
variation in NDVI (Brown et al., 2006). Although, stepwise 
regression statistical models have the limitation of over-
predicting the significance of results (Chartfield, 1995).  In 
addition, since NDVI time series data are usually affected 
by seasonal variations and trends, the requirement of 
normally distributed data for a regression analysis was 
not fully met. Hence, future research should consider 
the use of finer resolution (0.5 m) NDVI data that can 
accurately capture maize fields.

Figure 8 presents the results of the profile analysis 
of maize in Mombasa, Kenya. The time series profiles 
indicate variations based on the decomposition analysis 
of trend, seasonal, and random components for both the 
NDVI maize phenology and the Maize wholesale price 
series. 

Figure 9 below illustrates the maize residual price 
series  and standardized NDVI anomalies for the five 
markets. Values that fall below zero represent NDVI 
negative anomalies (drought conditions) and values 
that are above zero indicate NDVI positive anomalies 
(productive years). 2009 was found by FEWSNET to be 
one of the worst drought years, and maize prices rose 
by 130 percent in Nairobi and 85 percent in Mombasa 
compared to maize prices in 2008 (FEWSNET, 2009). The 
NDVI anomalies were below zero (indicating a drought) 
and the residual price series was also high. Therefore, 
drought had an impact on maize wholesale price in 
2009. However, there are other drought years mentioned 
in the literature (Andrea et al., 2011) that do not show 
a clear relationship between these variables (FEWSNET, 
2009; Dinku et al., 2007).  

The results of the temporal correlation between maize 
residual price series and NDVI seasonal anomalies 
correspond with  Brown et al. (2006), who found an 
association of negative NDVI anomalies with high price 
and positive NDVI anomalies with low price. Brown et al. 
concluded that NDVI anomalies can provide information 
on areas where food price and food production instability 
exists. Furthermore, maize price in Kenya seems to 
be more correlated with global maize prices because 
Kenya is a major importer of maize even in favourable 
production years (Kibaara, 2005). This assertion further 

Figure 9 :  Maize residual price series versus NDVI seasonal anomalies aggregated for the 
buffered areas of the five markets, illustrating the temporal relationship between these 
variables
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suggests that correction of the NDVI variable with maize 
prices, including global market prices, could be helpful 
for countries like Kenya that import food. 

Conclusion and Recommendation

This study evaluates the relationship between remotely 
sensed vegetation indices and the wholesale price of 
maize in Kenya from September 1998 to August 2011. To 
achieve this, the monthly wholesale price was isolated 
from the lagged global prices using a linear regression 
model. The residuals of the linear regression model of 
the optimal lag were regarded as the wholesale price 
corrected for the effect of global prices. Distributed 
lag and multiple linear regression models were used to 
establish a link between the residual price series and 
NDVI anomalies. A negative correlation (r = - 0.479) 
exists between the average residual price series and 
monthly NDVI anomalies for markets in Kenya. This study 
concludes that NDVI is a good index for monitoring the 
evolution of maize prices and food security emergency 
planning in Kenya. It is recommended that future 
research should consider correlating the wholesale 
maize prices with the global maize prices and other 
price-driving factors in order to obtain an even stronger 
regression result. 

End Notes 
1. Further details of the SPOT VGT data and their pre-processing 

approaches are available at www.spot-vegetation.com and 
www.spotimage.fr.

2. AFRICOVER website: http://www.fao.org/docrep/003/X0596E/
X0596e00.HTM

3. Global maize prices were obtained from http://www.indexmun-
di.com/commodities/?commodity=corn&months=300  

4. Global price in US dollars was converted to Kenyan shillings via 
www.oanda.com/currency-converter 

5. District shapefiles were obtained from  http://www.un-spider.
org/links-and-resources/data-sources/land-cover-kenya-africov-
er-fao

6. Information about grain basket zonation in the study area 
was obtained from both the MIB and the National Cereals and 
Produce Board (NCPB)
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