The Effect of Fermentation on bioactive compound of cocoa Beans: a systematic review and meta-analysis approach

  • Laras Cempaka Universitas Bakrie
  • Ardiansyah Universitas Bakrie
  • Nurul Asiah Universitas Bakrie
  • Wahyudi David Universitas Bakrie
Keywords: bioactive compound; cocoa; fermentation; meta-analysis; systematic review


Several studies have found the effect of cocoa bean fermentation on bioactive compounds through various fermentation characteristics; however, none of these studies adopted the meta-analysis approach. The effect of cocoa bean fermentation on six bioactive compounds: epicatechin, catechin, total phenolic content (TPC), anthocyanins, theobromine, and caffeine were systematically reviewed. This study aims to determine which variables that can affect the loss of bioactive compounds during fermentation so that their decrease can be reduced. The Cochrane Library, Medline, Science Direct, and Google Scholar databases were used to search the literature through November 2021. Twenty-nine studies were systematically reviewed, and 15 of them could be processed for meta-analysis. The results of the random effect model (REM) showed that cocoa bean fermentation significantly (p < 0.05) reduced the levels of catechins, epicatechins, TPC, anthocyanins, theobromine, and caffeine. The results of the study explain the concept that fermentation can reduce the number of bioactive compounds in cocoa beans. However, with certain genotype varieties, pod storage treatment and the addition of starter cultures are considered to be able to maintain a certain concentration of bioactive compounds.


Afoakwa, E.O., Quao, J., Takrama, J., Budu, A.S., & Saalia, F.K. (2013). Chemical composition and physical quality characteristics of Ghanaian cocoa beans as affected by pulp pre-conditioning and fermentation. Journal of Food Science and Technology, 50(6), 1097–1105.

Ahn, E., & Kang, H. (2018). Introduction to Systematic Review and Meta-analysis. Korean Journal of Anesthesiology, 71(2), 103-112.

Albertini, B., Schoubben, A., Guarnaccia, D., Pinelli, F., Vecchia, M.D., Ricci, M., Renzo, G.C.D., & Blasi, P. (2015). Effect of Fermentation and Drying on Cocoa Polyphenols. Journal of Agricultural and Food Chemistry, 1-28. DOI: 10.1021/acs.jafc.5b01062.

Andujar, I., Recio, M.C., Giner, R.M., & Rios, J.L. (2012). Review: Cocoa Polyphenols and Their Potential Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 1-23. doi:10.1155/2012/906252.

Aprotosoaie, A.C., Luca, S.V., & Miron, A. (2015). Flavor Chemistry of Cocoa and Cocoa Products- An Overview. Comprehensive Reviews in Food Science and Food Safety, 15:73-91. doi:org/10.1111/1541-4337.12180/.

Barisic ,V., Kopjar, M., Jozinovic, A., Flanjak, I., Ackar, D., Milicevic, B., Subaric, D., Jokic, S.,& Babic, J. (2019). The Chemistry behind Chocolate Production. Molecules, 24(17):3163. doi: 10.3390/molecules24173163.

Bastos, V.S., Uekane, T.M., Bello, N.A., Rezende, C.M.d., Paschoalin, V.M.F., & Aguila, E.M.D. (2019). Dynamics of volatile compounds in TSH 565 cocoa clone fermentation and their role on chocolate flavor in Southeast Brazil. Journal of Food Science and Technology, 56(6), 2874–2887. doi: 10.1007/s13197-019-03736-3.
Bauer, S.R., Ding, E.L., & Smit, L.A. (2011). Cocoa Consumption, Cocoa Flavonoids, and Effects on Cardiovascular Risk Factors: An Evidence-Based Review. Current Cardiovascular Risk Reports, 5(2):120–127. doi: 10.1007/s12170-011-0157-5.
Bortolini, C., Patrone, V., Puglisi, E., & Morelli, L. (2016). Detailed analyses of the bacterial populations in processed cocoa beans of different geographic origin, subject to varied fermentation conditions. International Journal of Food Microbiology, 236, 98–106.
Brito, B.dN.dC.B., Chiste, R.C., Pena, R.dS., Gloria, M.B.A., & Lopes, A.S. (2017). Bioactive amines and phenolic compounds in cocoa beans are affected by fermentation. Food Chemistry, 484-490.
Brito, E.S.d., Garcia, N.H.P., Gallao, M.I., Cortelazzo, A.L., Fevereiro, P.S., & Braga, M.R. (2001). Structural and chemical changes in cocoa (Theobroma cacao L) during fermentation, drying and roasting. Journal of the Science of Food and Agriculture, 81, 281-288.
Calvo, A.M., Botina, B.L., Garcia, M.C., Cardona, W.A., Montenegro, A.C., & Criollo, J. (2021). Dynamics of cocoa fermentation and its effect on quality. Scientific Reports, 11(1), 1–15.
Caporaso, N., Whitworth, M.B., Fowler, M.S., & Fisk, I.D. (2018). Hyperspectral imaging for non-destructive prediction of fermentation index, polyphenol content and antioxidant activity in single cocoa beans. Food Chemistry, 258, 343-351.
Caprioli, G., Fiorini, D., Maggi, F., Nicoletti, M., Ricciutelli, M., Toniolo, C., Prosper, B., Vittori, S., Sagratini, G. (2016). Nutritional composition, bioactive compounds and volatile profile of cocoa beans from different regions of Cameroon. International Journal of Food Sciences and Nutrition, 67(4), 422–430.
Crafack, M., Mikkelsen, M.B., Saerens, S., Knudsen, M., Blennow, A., Lowor, S., Takrama, J., Swiegers, J.H., Petersen, G.B., Heimdal, H., & Nielsen, D.S. (2013). Influencing cocoa flavour using Pichia kluyveri and Kluyveromyces marxianus in a defined mixed starter culture for cocoa fermentation. International Journal of Food Microbiology, 167(1), 103–116.
Cruz, J.F.M., Leite, P.B., Soares, S.E., & Bispo, E.dS. (2015). Bioactive compounds in different cocoa (Theobroma cacao L) cultivars during fermentation. Food Science and Technology, 35(2), 279–284.
Dang, Y.K.T., & Nguyen, H.V.H. (2019). Effects of Maturity at Harvest and Fermentation Conditions on Bioactive Compounds of Cocoa Beans. Plant Foods for Human Nutrition, 74(1):54–60.
Emmanuel, O.A., Jennifer, Q., Agnes, S.B., Jemmy, S.T., &Firibu, K.S. (2012). Influence of pulp-preconditioning and fermentation on fermentative quality and appearance of Ghanian cocoa (Theobroma cacao) beans. International Food Research Journal, 19(1), 127-133.
Estrada, S.J.C., Vázquez, M.U., Cardona, A.V., Pérez, D.B.P., & Cervantes, E.L. (2020). Thermal properties and volatile compounds profile of commercial dark-chocolates from different genotypes of cocoa beans (Theobroma cacao L.) from Latin America. Food Research International, 136,109594.
Evina, V.J.E., Taeye, C.D., Niemenak, N., Youmbi, E., & Collin, S. (2016). Influence of acetic and lactic acids on cocoa flavan-3-ol degradation through fermentation-like incubations. LWT-Food Science and Technology, 68:514-522. 0023-6438//
Fang, Y., Li, R., Chu, Z., Zhu, K., Gu, F., & Zhang, Y. (2020). Chemical and flavor profile changes of cocoa beans (Theobroma cacao L.) during primary fermentation. Food Sci Nutr, 8, 4121-4133. DOI:10.1002/fsn3.1701.
Hernandez, C.H., Alcaide, I.V., Sillero, A.M.M., Bolanos, J.F., & Gutierrez, G.R. (2018). Bioactive compounds in Mexican genotypes of cocoa cotyledon and husk. Food Chemistry, 240, 831-839.
Ho, V.T.T., Zhao, J. & Fleet, G. (2014). Yeasts are essential for cocoa bean fermentation. International Journal of Food Microbiology, 174, 72–87.
Hurst, W.J., Krake, S.H., Bergmeier, S.C., Payne, M.J., Miller, K.B., & Stuart, D.A. (2011). Impact of fermentation, drying, roasting, and Dutch processing on flavan-3-ol stereochemistry in cacao beans and cocoa ingredients. Chemistry Central Journal, 5(1), 1-10.
Junior, G.C.A.C., Ferreira, N.R., Gloria, M.B.A., Martins, L.H.dS., & Lopes, A.S. (2021). Chemical implications and time reduction of on-farm cocoa fermentation by Saccharomyces cerevisiae and Pichia kudriavzevii. Food Chemistry, 338, 127834.
Kadow, D., Niemenak, N., Rohn, S., & Lieberei, R. (2015). Fermentation-like incubation of cocoa seeds (Theobroma cacao L.) - Reconstruction and guidance of the fermentation process. LWT - Food Science and Technology, 62(1), 357–361.
Katz, D.L., Doughty, K., & Ali, A. (2011). Cocoa and Chocolate in Human Health and Disease. Antioxidant & Redox Signaling,15(10), 2779-2811. 10.1089/ars.2010.3697.
Kresnowati, M.T.A.P., & Febriami, H. (2015). Mapping the Effects of Starter Culture Addition on Cocoa Bean Fermentation. ASEAN Engineering Journal, Part B 5(1):25-37.
Latif, R. (2013). Chocolate/cocoa and human health: A review. Netherlands Journal of Medicine, 71(2), 63–68.
Lefeber, T., Janssens, M., Camu, N., & De Vuyst, L. (2010). Kinetic analysis of strains of lactic acid bacteria and acetic acid bacteria in cocoa pulp simulation media toward development of a starter culture for cocoa bean fermentation. Applied and Environmental Microbiology, 76(23):7708–7716.
Lefeber, T., Papalexandratou, Z., Gobert, W., Camu, N., & De Vuyst, L. (2012). On-farm implementation of a starter culture for improved cocoa bean fermentation and its influence on the flavour of chocolates produced thereof. Food Microbiology, 30(2), 379–392.
Lessa, O.A., Reis, N.dS., Leite, S.G.F., Gutarra, M.L.E., Souza, A.O., Gualberto, S.A., de Oliveira, J.R., Aguiar-Oliveira, E., & Franco, M. (2017). Effect of the solid state fermentation of cocoa shell on the secondary metabolites, antioxidant activity, and fatty acids. Food Science and Biotechnology, 27(1), 107–113.
Lima, L.J.R., Almeida, M.H., Nout, M.J.R., & Zwietering, M.H. (2011). Theobroma cacao L., “The Food of the Gods”: Quality determinants of commercial cocoa beans, with particular reference to the impact of fermentation. Crit. Rev. Food Sci. Nutr, 51(8), 731–761.
Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Review article: Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews, 4(8), 118-126.
Melo, T.S., Pires, T.C., Engelmann, J.V.P., Monteiro, A.L.O., Maciel, L.F., & Bispo, E.dS. (2020). Evaluation of the content of bioactive compounds in cocoa beans during the fermentation process. Journal of Food Science and Technology.
Miguel, M.G.dC.P., Reis, L.V.dC.S., Efraim, P., Santos, C., Lima, N., & Schwan, R.F. (2017). Cocoa fermentation: Microbial identification by MALDI-TOF MS, and sensory evaluation of produced chocolate. LWT - Food Science and Technology, 77, 362–369.
Misnawi, Jinap, S., Jamilah, B., & Nazamid, S. (2003). Effects of incubation and polyphenol oxidase enrichment on colour, fermentation index, procyanidins and astringency of unfermented and partly fermented cocoa beans. International Journal of Food Science and Technology, 38(3), 285–295.
Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L.A., & Group, P.P. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4(1):1-9. doi:10.1186/2046-4053-4-1.
Montagna, M.T., Diella, G., Triggian,o F., Caponio, G.R., Giglio, O.D., Caggiano, G., Ciaula, A.D., & Portincasa, P. (2019). Chocolate, "Food of the Gods": History, Science, and Human Health. Int. J. Environ. Res. Public Health, 16(24), 4960.
Moreira, I.M.d.V., Vilela, L.d.F., Santos, C., Lima, N., & Schwan, R.F. (2018). Volatile compounds and protein profiles analyses of fermented cocoa beans and chocolates from different hybrids cultivated in Brazil. Food Research International, 109, 196–203.
Nazaruddin, R., Seng, L.K., Hassan, O., & Said, M. (2006). Effect of pulp preconditioning on the content of polyphenols in cocoa beans (Theobroma cacao) during fermentation. Industrial Crops and Products, 24(1):87–94.
Ooi, T.S., Ting, A.S.Y., & Siow, L.F. (2020). Influence of selected native yeast starter cultures on the antioxidant activities, fermentation index and total soluble solids of Malaysia cocoa beans: A simulation study. LWT, 122, 108977.
Oracz, J., Nebesny, E., & Zyzelewicz, D. (2015). Changes in the flavan-3-ols, anthocyanins, and flavanols composition of cocoa beans of different Theobroma cacao L. groups affected by roasting conditions. European Food Research and Technology, 241, 663–681.
Oracz, J., Zyzelewicz, D., & Nebesny, E. (2015). The Content of Polyphenolic Compounds in Cocoa Beans (Theobroma cacao L.), Depending on Variety, Growing Region, and Processing Operations: A Review. Critical Reviews in Food Science and Nutrition, 55(9),
Osman, H., Nazaruddin, R., & Lee, S.L. (2004). Extracts of cocoa (Theobroma cacao L.) leaves and their antioxidation potential. Food Chem, 86, 41–45.
Othman, A., Jalil, A.M.M., Wehg, K.K., Ismail, A., Ghani, N.A., & Adenan, I. (2010). Epicatechin content and antioxidant capacity of cocoa beans from four different countries. African Journal of Biotechnology, 9(7), 1052-1059. DOI: 10.5897/AJB09.1219.
Papalexandratou, Z., Vrancken, G., & Bruyne, K.D., Vandamme P., Vuyst L.D. (2011). Spontaneous organic cocoa bean box fermentations in Brazil are characterized by a restricted species diversity of lactic acid bacteria and acetic acid bacteria. Food Microbiology, 28(7), 1326-1338. doi:10.1016/
Payne, M.J., Hurst, W.J., Miller, K.B., Rank, C.,& Stuart, D.A. (2010). Impact of fermentation, drying, roasting, and dutch processing on epicatechin and catechin content of cacao beans and cocoa ingredients. Journal of Agricultural and Food Chemistry, 58(19), 10518–10527.
Peláez, P.P., Bardon, I., & Camasca, P. (2016). Methylxanthine and catechin content of fresh and fermented cocoa beans, dried cocoa beans, and cocoa liquor. Scientia Agropecuaria, 7(4), 355-365. DOI: 10.17268/sci.agropecu.2016.04.01.
Pereira, A.P.M., Stellari, H.A., Vilela, L.F., Schwan, R.F., & Sant’Ana, A.S. (2020). Dynamics of Geobacillus stearothermophilus and Bacillus cereus spores inoculated in different time intervals during simulated cocoa beans fermentation’, Lwt, 120, 108941.
Pereira, G.V.dM., Miguel, M.G.dC.P., Ramos, C.L., & Schwan, R.F. (2012). Microbiological and Physicochemical Characterization of Small-Scale Cocoa Fermentations and Screening of Yeast and Bacterial Strains To Develop a Defined Starter Culture. Applied and Environmental Microbiology, 78(15), 5395-5405. doi:10.1128/AEM.01144-12
Pérez, T.M., Grimbs, S., D’Souza, R.N., Bernaert, H., & Kuhnert, N. (2018). Profiling, quantification and classification of cocoa beans based on chemometric analysis of carbohydrates using hydrophilic interaction liquid chromatography coupled to mass spectrometry. Food Chemistry, 258, 284–294.
Qin, X.W., Lai, J.X., Tan, L.H., Hao, C.Y., Li, F.P., He, S.Z., & Song, Y.H. (2017). Characterization of volatile compounds in Criollo, Forastero, and Trinitario cocoa seeds (Theobroma cacao L.) in China. International Journal of Food Properties, 20(10), 2261–2275. https://doi.org10.1080/10942912.2016.1236270.
Ramos, C.L., Dias, D.R., & Miguel, M.G.d.C.P., Schwan R.F. (2014). Impact of different cocoa hybrids (Theobroma cacao L.) and S. cerevisiae UFLA CA11 inoculation on microbial communities and volatile compounds of cocoa fermentation’, Food Research International, 64, 908–918.
Romanens, E., Leischtfeld, S.F., Volland, A., Stevens, M., Krahenmann, U., Isele, D., Fischer, B., Meile, L., & Schwenninger, S.M. (2019). Screening of lactic acid bacteria and yeast strains to select adapted anti-fungal co-cultures for cocoa bean fermentation. International Journal of Food Microbiology, 290, 262–272.
Rottiers, H., Sosa, D.A.T., Winne, A.D., Ruales, J., Clippeleer, J.D., Leersnyder, I.D., Wever, J.D., Everaert, H., Messens, K., & Dewettinck. (2019). Dynamics of volatile compounds and flavor precursors during spontaneous fermentation of fine flavor Trinitario cocoa beans. European Food Research and Technology, 245(9), 1917–1937.
Sandhya, M.V.S., Yallappa, B.S., Varadaraj, M.C., Puranaik, J., &Rao, L.J., Janardhan P., Murthy P. (2016). Inoculum of the starter consortia and interactive metabolic process in enhancing quality of cocoa bean (Theobroma cacao) fermentation. LWT - Food Science and Technology, 65, 731–738.
Saunshia, Y., Sandhya, M.K.V.S., Lingamallu, J.M.R., Padela, J., & Murthy, P. (2018). Improved Fermentation of Cocoa Beans with Enhanced Aroma Profiles. Food Biotechnology, 32(4), 257–272.
Serra, J.L., Moura, F.G., Pereira, G.V.d.M., Soccol, C.R., Rogez, H., & Darnet, S. (2019). Determination of the microbial community in Amazonian cocoa bean fermentation by Illumina-based metagenomic sequencing. LWT, 106, 229–239.
Servent, A., Boulanger, R., Davrieux, F., Pinot, M.N., Tardan, E., Chiron, N.F., & Hue, C. (2018). Assesment of cocoa (Theobroma cacao L.) butter content and composition throughout fermentations. Food Research International, 107, 675-682.
Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. Journal of Functional Foods, 18, 820-897.
Sunoj, S., Igathinathan,e C., & Visvanathan, R. (2016). Nondestructive determination of cocoa bean quality using FT-NIR spectroscopy. Computers and Electronics in Agriculture, 124, 234-242.
Terahara, N. (2015). Flavonoids in Foods: A Review. Natural Product Communications, 10(3): 521-528.
Tokede, O.A., Gaziano, J.M., & Djousse, L. (2011). Systematic Review. Effect of cocoa products/ dark chocolate on serum lipids: a meta-analysis. European Journal of Clinical Nutrition, 65, 879-886. DOI: 10.1038/ejcn.2011.64.
Vuyst, L.D., & Leroy, F. (2020). Functional role of yeasts, lactic acid bacteria, and acetic acid bacteria in cocoa fermentation processes. FEMS Microbiology Reviews, 44(4). https://doi/10.1093/femsre/fuaa014/5838746.
Vuyst, L.D., & Weckx, S. (2016). The cocoa bean fermentation process: from ecosystem analysis to starter culture development. Journal of Applied Microbiology, 121, 5-17. doi:10.1111/jam.13045
Yao, W., Ouattara, H.G., & Goualie, B., Soumahoro S., Niamke S. (2014). Analysis of some functional properties of acetic acid bacteria involved in Ivorian cocoa fermentation. Journal of Applied Biosciences, 75(1), 6282.
How to Cite
Cempaka, L., Ardiansyah, Asiah, N., & David, W. (2023). The Effect of Fermentation on bioactive compound of cocoa Beans: a systematic review and meta-analysis approach. Future of Food: Journal on Food, Agriculture and Society, 11(2). Retrieved from
Research Articles