Nutrient and oil profile of Escamol, an edible larva of ants (Liometopum apiculatum Mayr)

Authors

  • Jose Ariza UAEH
  • María Fernanda Escamilla Rosales Universidad Autónoma del Estado de Hidalgo

Keywords:

Escamol, fatty acids, proximal chemical analysis

Abstract

The objective of this study was to evaluate proximal chemical analysis, oil and fatty acids in escamol dehydrated and butter-fried that are commercially available in Mexico. In order to measure the escamol and oil quality, a chemical analysis were performed. The identification fatty acids was by refractive index. The proximal chemical analysis results in escamol fresh and deshydrated indicated that moisture (56.00-1.89 %), protein (15.30-34.78 %), lipids (20.05-45.57 %), ash (1.91-4.35 %) and carbohydrates (6.73-13.41 %), its porcentage are within the parameter reported for the order Hymenoptera (p < 0.05) comparated with escamol butter-fried (p > 0.05). The moisture (1.53 %) in escamol oil, accelerates the degradation of the triacylglycerides, generating free fatty acids (17.48 % oleic acid), while frying increase lipids with double bonds (133. 79 cg I2 g-1) and causes oxidation products (3.60 meq O2 kg-1 of oil). The escamol oil extracted from the dehydrated and butter-fried sample, presented a refractive index similar beeswax (1.442) and pure edible coconut oil (1.447) respectively. So they could present mainly fatty acids as lauric [C12:0 (41.00-56.00 %)], monounsaturated: palmitoleic [C16:1 (12.00 %)] and oleic [C18:1 (3.50-11.00 %)] and polyunsaturates: linoleic [C18:2 (1.00-2.5 %)]. The frying has a minimal effect on the chemical composition of the oil and fatty acids in escamol.

Author Biography

María Fernanda Escamilla Rosales, Universidad Autónoma del Estado de Hidalgo

Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, San Agustín Tlaxiaca, Hidalgo, México

References

Aalhus, J. L., & Dugan, M. E. R. (2014). Spoilage, factors affecting (b) oxidative and enzymatic. London, UK: Academic Press.
AOAC. (2019). Official Methods of Analysis of AOAC International. Gaithersburg, MD: AOAC.
Ariza Ortega, J. A., López-Valdez, F., Montalvo-Paquini, C., Arellano-Huacuja, A., & Luna-Suárez, S. 2004. Desgomado y Neutralizado del aceite de amaranto. Revista de Ciencia y Tecnología de los Alimentos, 14, 28-32.
Badui, D. S. (2013). Química de alimentos. México: Pearson.
Brown, J., Vargo, S., Connor, E., & Nuckols. M. (1973). Causes of vertical stratification in the density of Cameraria hamadryadella. Ecological Entomology, 22(1), 16-25. doi.org/10.1046/j.1365-2311.1997.00046.x.
Conconi, M. (1993). Estudio comparativo de 42 especies de insectos comestibles con alimentos convencionales en sus valores nutritivo, calórico, proteínico y de aminoácidos haciendo énfasis en la aportación de los aminoácidos esenciales y su papel en el metabolismo humano. México: UNAM.
Cortés, P., Badillo, G., Segura, L., & Bouchon, P. (2014). Experimental evidence of water loss and oil uptake during simulated deep-fat frying using glass micromodels. Journal of Food Engineering, 140, 19-27. doi:10.1016/j.jfoodeng.2014.04.005.
Dana, D., & Saguy, S. (2006). Review: Mechanism of oil uptake during deep-fat frying and the surfactant effect-theory and myth. Advances in Colloid and Interface Science, 128(130), 267-72. doi:10.1016/j.cis.2006.11.013.
Ghosh, S., So-Min, L., Chuleui, J., & Meyer-Rochow, V. (2017). Nutritional composition of five commercial edible insects in South Korea. Asian Pacific Journal of Tropical Medicine, 20, 686-694. doi:10.1016/j.aspen.2017.04.003.
Jackson, M. A., & Eller, F. J. (2006). Isolation of long-chain aliphatic alcohols from beeswax using lipase-catalyzed methanolysis in supercritical carbon dioxide. Journal of Supercritical Fluids, 37, 173-177. doi: 10.1016/j.supflu.2005.08.008.
Juárez, M., & Sammán, N. (2010). El deterioro de los aceites durante la fritura. Revista Española de Nutrición Comunitaria, 13, 82-94.
Kusnezov, N. (1975). Numbers of species of ants in faune of differents latitudes. Evolution, (11)3, 298-299. doi.org/10.1111/j.1558-5646.1957.tb02898.x.
Ladrón de Guevara, O., Padilla, P., García, L., Pino, M. J. M., & Ramos-Elorduy, J. (1995). Amino acid determination in some edible Mexican insects. AminoAcids, 9, 161-173. doi: 10.1007/BF00805837.
Lara-Juárez, P., Aguirre, R. R. J., Castillo, L. P., & Reyes-Agüero, A. J. (2018). Recolección de pupas (escamoles) de Liometopum Apiculatum (Hymenoptera, Formicidae, Dolichoderinae) en el altiplano de San Luis Potosí, México. INTERCIENCIA, 43(11), 763-769.
Melgar-Lalanne, G., Hernandez-Alvarez, A. J., & Salinas-Castro, A. (2019). Edible insects processing: Traditional and innovative technologies. Comprehensive Reviews in Food Science and Food Safety, 18, 1166-1191. doi.org/10.1111/1541-4337.12463.
NMX. (1994). Norma Mexicana (NOM-116-SSA1-1994). Determinación de humedad y materia volátil. México: SECOFI.
NMX. (2010). Norma Mexicana (NMX-F-154-SCFI-2010). Determinación del índice de peróxido. México: SECOFI.
NMX. (2011a). Norma Mexicana (NMX-F-152-SCFI-2011). Determinación del índice de yodo por el método de Wijs. México: SECOFI.
NMX. (2011b). Norma Mexicana (NMX-F-074-SCFI-2011). Determinación del índice de refracción con el refractómetro de Abbe. México: SECOFI.
NMX. (2011c). Norma Mexicana (NMX-F-014-SCFI-2011). Aceite comestible puro de coco. México: SECOFI.
NMX. (2012). Norma Mexicana (NMX-F-101-SCFI-2012). Determinación del índice de acidez. México: SECOFI.
NMX. (2018). Norma Mexicana (NMX-F-808-SCFI-2018). Aceite vegetal comestible. México: SECOFI.
Okparanta, S., Daminabo, V., & Solomon, L. (2018). Assessment of rancidity and other physicochemical properties of edible oils (Mustard and Corn Oils) stored at room temperature. Journal of Food and Nutrition Science, 6(3), 70-75. doi: 10.11648/j.jfns.20180603.11.
Raksakantong, P., Meeso, N., Kubola, J., & Siriamornpun, S. (2010). Fatty acids and proximate composition of eight Thai edible terricolous insects. Food Research International, 43, 350-355. doi.org/10.1016/j.foodres.2009.10.014.
Ramos-Elorduy, J. (2009). Anthropoentomophagy: Cultures, evolution and sustainability. Entomological Research, 39, 271-288. doi:10.1111/j.1748-5967.2009.00238.x.
Ramos-Elorduy, J. (2006). Threatened edible insects in Hidalgo, Mexico and some measures to preserve them. Journal Ethnobiology Ethnomedicine, 2, 51. doi.org/10.1186/1746-4269-2-51.
Ramos-Elorduy, J., Pino, J., & Martínez, V. (2012). Could grasshoppers be a nutritive meal?. Food and Nutrition Sciences, 3, 164-175. doi: 10.4236/fns.2012.32025 7,686.
Ramos-Elorduy, J., & Viejo, J. (2007). Los insectos como alimento humano: Breve ensayo sobre la entomofagia, con especial referencia a México. Real Sociedad Española de Historia Natural, 102(1-4), 61-84.
Rangaswamy, B. L., & Nasirullah. (2016). Effect of heat on physico-chemical and thermo-oxidative stability of repeatedly heated rice bran oil (RBO). International Journal of Food Nutrition Science, 5, 1-5.
Rivera, Y., Gutiérrez, C., Gómez, R., Matute, M., & Izaguirre, C. (2014). Cuantificación del deterioro de aceites vegetales usados en procesos de frituras en establecimientos ubicados en el Municipio Libertador del Estado Mérida. Ciencia e Ingeniería, 35(3), 157-164.
Rumpold, B. A., & Schlüter, O. (2013). Nutritional composition and safety aspects of edible insects. Molecular Nutrition & Food Research, 57, 802-823. doi: 10.1002/mnfr.201200735.
Sun, L., Feng, Y., & He, Z. (2007). Studies on alkaline solution extraction of polysaccharide from silkworm pupa and its immunomodulating activities. Forest Research, 20(6), 782-786.
Torres-Cifuentes, D., Cortés-Torres, C., & Ayala, A. (2015). Identificación de carbohidratos y lípidos y cuantificación de ácidos grasos de la larva de Ancognatha ustulata (Coleoptera: melolonthidae). Boletín de la Sociedad Entomológica Aragonesa, 56, 257-264.
Trillo, A. (2017). Adulteración de la cera de abeja. Problemática en su industrialización y comercialización. México: UNAM.
USDA (2018). United States Department of Agriculture. Retrieved from https://ndb.nal.usda.gov/ndb/foods/show/01145?fgcd=&manu=&format=&count=&max=25&offset=&sort=default&order=asc&qlookup=butter&ds=&qt=&qp=&qa=&qn=&q=&ing=Final del formularioNational Nutrient Database for Standard Reference.
Vilarrasa, E. (2014). Use of re-esterified oils in pig and broiler chicken diets. España: Universitat Autónoma de Barcelona.
Ying, L., Hanhan, L., Shumin, L., Sheng, W., Rong-Jing, J., & Sheng, L. (2009). Hormonal and nutritional regulation of insect fat body development and function. Archives of Insect Biochemistry and Physiology, 71, 16-30. doi:10.1002/arch.20290.

Downloads

Published

2021-05-25

How to Cite

Ariza, J., & Escamilla Rosales, M. F. (2021). Nutrient and oil profile of Escamol, an edible larva of ants (Liometopum apiculatum Mayr). Future of Food: Journal on Food, Agriculture and Society, 9(2). Retrieved from https://thefutureoffoodjournal.com/manuscript/index.php/FOFJ/article/view/331

Issue

Section

Research Articles